Heurio Latticework's

<u>Acurio Latticework's</u>

Expanded Foam PVC Sheets

INDEX

MACHINING2
 General Rules Cutting Stamping and Die Cutting Sawing Drilling Holes Routing and Milling
SURFACE TREATMENT
 Surface Preparation Screen Printing Painting Varnishing Glues and Adhesives
PHOTO MOUNTING AND LAMINATING
THERMOFORMING
 Heat Bending Pressure and Vacuum Forming
WELDING7
 Butt Welding Hot Air Welding
INSTALLATION
 Free Hanging Signs Fastening
WEATHERABILITY9
FIRE RESISTANCE
FORMULATION PARAMETERS9
TECHNICAL SPECIFICATIONS
MATERIAL SAFETY DATA INFORMATION

MACHINING	Foam can be used in the fabrication of variety of artifacts using common tools and machinery as recommended in this section.
General Rules	When machining Foam with high-speed equipment, using carbide tipped tools is recommended. Lower speeds usually work better and always use sharp tools to ensure smooth edges.
Cutting	Sheets of Foam up to 3 mm thick can be cut with a utility knife. Table and band saws, including routers, can be used to cut thicker gauges. Power shears or guillotines are not recommended. They can cause edges to be crushed.
Stamping and Die Cutting	Stamping and die cutting are cost-effective methods for the efficient manufacturing of large quantities of pieces where edges require no routed finish. For best results, it is very important to cut the material AT THE RIGHT TEMPERATURE (70-100 degrees F). As a rule the lower the sheet temperature, the less consistent the process and the edge finish. For complete instructions on die cutting, please call our toll free number on the back of this manual.
	Note:
	Avoid making shapes or cutting holes that require sharp corners because it creates a weak area that can be broken. Easing off these angles with a radius is recommended. (see illustration I)
Sawing	For best results, use carbide tipped <i>circular saw blades</i> with a rake angle of 0 degrees to 15 degrees and a clearance angle of 10 degrees to 20 degrees with a tooth pitch of .080" to .400". Saw at a cutting speed of 8,000 to 12,000 feet per minute and a feed speed of 70 to 90 feet per minute. <i>(see illustration 2)</i>
	When using <i>band saws</i> , high speed steel blades used for cutting wood or plastic are commended with 4 to 8 teeth per inch at a cutting speed of 3,000 to 5,000 feet per minute and a maximum feed speed of 40 feet per minute.

Drilling Holes	Holes may be drilled through Foam using the same methods employed for drilling wood. Carbide tipped drills are recommended with a point angle between 90 degrees and 110 degrees and with a spiral angle of 30 degrees. <i>(see illustration 3).</i> High feed and drilling speeds may hinder the efficiency of the drill by creating heat buildup. For best results, use sharp bits and lower speeds.		
Routing and Milling	Foam may be slotted, beveled, rabbeted, etc. with routers or shapers commonly used for working wood. Carbide tipped cutters are preferred.		
SURFACE TEREATMENT	Foam is a versatile material suitable for a variety of graphic applications ranging from signs to POP displays. Below are some helpful hints on how to prepare and use Foam for printing, painting, gluing, photo mounting and laminating.		
Surface Preparation	It is always a good practice to clean the surface of the material to eliminate the possibility of any grease or dirt that may have contaminated the surface during handling. For best results, use Isopropyl alcohol or naphtha and clean lint-free cloth to wipe the surface. Avoid using paint thinners because they leave a residue on the surface that could interfere with the bonding of the paints, inks and adhesives.		
Screen Printing	Foam has a consistent and smooth surface that lends itself to the permanent acceptance and retention of a variety of printing inks. One of the most commonly used methods screen printing. Follow the surface preparation instructions. It is always a good practice to test print before going into full production.		
	Note:		
	Mixing different brands of printing inks and solvents may reduce the longevity of the sign. A telltale indication is the premature cracking of the surface which is difficult to determine when first printed.		
	Scratches and dents will become accentuated when screen printed. Sanding down the affected area with a very fine sandpaper or using a		

blow type heat gun is recommended to reduce the change of the scratch showing through the ink. Please refer to *Table 1* for a list of pre-approved ink manufactures.

PaintingIn addition to screen printing, Foam also has the perfect surface for
paint adhesion. There is no need to prime the surface before painting.
Most conventional tools and painting methods will work successfully
with Foam. However, for best results, follow the surface preparation
guidelines introduces earlier. The surface of Foam will accept acrylic-
based lacquers, urethane and vinyl based paints. Please refer to Table 2
for a list of pre-approved paint manufactures.

For outdoor use, to minimize heat build up and possible deflection, pastel colors, rather than darker colors, are recommended. Painting the entire surface with dark colors is not advised.

VarnishingAlways follow the surface preparation instructions previous mentioned.
Air-dried varnishes are recommended. Due to the nature of
over-baked varnishes are not suitable. Most available varnishes in the
market will touch dry in 60 minutes and thoroughly dry in 24 hours.

Table 1 Screen Printing Inks				
Manufacturer's Name	Trade Name	Type of Ink		
Colonial Printing Ink Corp.	C99, Gloss Vinyl	Solvent Base		
Colonial Printing Ink Corp.	D40	Ultra Violet		
Nazdar Company	System 2	Solvent Base		
Nazdar Company	GV Series 44000	Solvent Base		
Nazdar Company	Series 9700	Solvent Base		
Nazdar Company	Plastics Plus	Solvent Base		
Nazdar Company	Series 70000	Solvent Base		
Nazdar Company	Series 2700	Water Base		
Nazdar Company	Series 3200 & Series 3600	Ultra Violet		
T. W. Graphics		Water Base		

Table 2 Painting				
Manufacurer's Name Trade Name Type of Paint				
Sherwin Williams	Polane	Polyurethane Base		
Schwartz Chemical Company Rez-N-Lac Vinyl Base				

Glues and AdhesivesThere are a variety of solvent-based glues and adhesives in the market
that can be used bondingFoam to itself and other materials. For best
results, InteFoam sheets must be dry, clean and free of oil or grease.

MEK (Methyl Ethyl Ketone). THP (Tetra Hydro Furan) or common PVC pipe glues work well. Make sure glue joints have a close fit tolerance. Spray adhesives work well for light duty applications such as mounting photographs and other lightweight graphics. Contact, rubber, epoxy and urethane based adhesives work well with specific non-PVC substrates.

PHOTO MOUNTING AND LAMINATING

Foam is a tough, abuse-resistant substrate that can be used for photo mounting and the transfer of film overlays. It has many advantages over known materials, such as MDO, cardboard and paper backed foams. Corners remain true during tough handling. It can be stripped, repositioned, salvaged and reused in case of an error. Once laminated, it can be worked using stand methods of further conversion.

There are many methods for mounting and laminating that vary according to the type of adhesive used and whether it is done manually or using presses. Pressure sensitive spray adhesives or transfer adhesive films with resin coated papers that can be peeled from the adhesive work well for photo mounting and laminating.

The use of a laminating machine may be required for removing air bubbles caused during the mounting process. To perform this function, it is recommended to use between 10 to 15 psi of surface pressure to prevent distortions of the photo or the laminate being mounted. Please refer to Table 3 for pre-approved adhesives for photo mounting and laminating.

Note:

Sheets largely covered by laminates, vinyl film, carpet, paints, etc., may deflect when exposed to direct sunlight or sustained heat due to the expansion and contraction differential of the covering material and the Foam substrate. Covering should be done with caution and due consideration of the environmental conditions. In-place testing is always recommended.

Table 3Adhesives for Photo Mounting			
Manufacturer's Name Trade Name Type of Adhesive			
Radiant Technology Surestik SS2203		Double coated polyester tape with acrylic adhesive	
Seal Products	ProBond	Spray adhesive	

THERMOFORMING	Foam is a thermoplastic. It becomes soft when exposed to intensive heat. This characteristic gives the material thermoforming capabilities. However, since it is expanded PVC foam, it is important to know that it lacks the draw depth of solid PVC sheets. Heat bending, pressure and vacuum forming are among the methods that may be used to thermoform Foam. Depending on the method used, the optimum heating temperature of the sheet should range between 250 degrees F and 350 degrees F
Heat Bending	Heat bending is a common process that does not require sophisticated equipment. Most bending can be accomplished with strip or radiant heaters, hot air ovens, and, for thin panels, hot air welding guns.
	Basic Premises:
	 Minimum radius of bend should be 3 times the sheet gauge. (see illustration 4) Heating time 30 to 50 seconds per millimeter of thickness. Leave at least 20 times sheet gauge for border when hot line bending angles. Heat both sides when bending sheets 5mm to 10mm. Always make sure material is cooled before using after bending.
Pressure and Vacuum Forming	Both of these methods require the use of air circulating ovens capable of reaching temperatures between 260 degrees F and 280 degrees F or radiant heat panels capable of reaching temperatures exceeding 700 degrees F. The usage of molds is required for the thermoforming process. These methods are ideal for consistent, high production projects require more elaborate details than hot wire bending.
	Basic Premises:
	 Molds should not have sharp angles. (see illustration 5) Molds should have at least 5 degrees draft angles. Temperature should not exceed 750 degrees F for top heating and 650 degrees F for bottom heating. Heating time should be between 15 and 20 seconds per millimeter of thickness Sheets must be securely clamped to molds to minimize shrinkage Sheets must be completely cooled before removing from mold.

WELDING	There are several methods for welding plastics. The most common are butt welding and hot air welding or gas welding. Note that welds on expanded PVC foam are usually not as strong as those of solid PVC
Butt Welding	Butt welding is recommended for gauges 4mm and over. This method allows fusion by simply joining two ends together under pressure after ends have been heated to an optimum bonding state. This pressure must be maintained until the material is completely cooled. <i>(see</i> <i>illustration 6)</i>
Hot Air Welding	Hot air welding is accomplished with the use of a hot air gun and a welding rod. (<i>see illustration 7</i>) The temperature can be regulated and this method allows great flexibility. Rods made of Type I PVC are preferred, but Type II can also work well. Welding is accomplished by feeding the rod through the gun and applying pressure on the rod as the sheet and rod are heated simultaneously.
	For best results, the temperature of the air at the tip of the rod should be 680 degrees F. Welding pressure should be approximately 2 to 3lbs. depending on rod diameter. Under optimum conditions, welding 10 to 18 inches per minute can be accomplished.
INSTALLATION	Foam PVC is a low-density material that can be compressed relatively easily. When securing the material in place, make sure the clamping force is spread evenly over a large area.
	All extruded products have grain determined by the direction of the extrusion which is the length of the sheet. The grain direction offers greater flexural strength when compared to the cross grain direction. Because of this characteristic, make sure the grain direction is parallel to the floor when making flag-type signs.
	Note: Most thermoplastics tend to become hard and brittle in cold temperatures just as exposure to wide variations in temperature and

outdoor direct installation to concrete or metal surfaces may cause deflection. Please read the following instructions carefully.

Free Hanging SignsWhen installing free hanging signs such as aisle markers in
supermarkets, bookstores, and home centers, locate holes 1" or more
from the vertical edge and at least ¾" from the horizontal edge. Use
grommets to prevent wear and stress. The supporting chains should be
installed at a 30 degree to 45 degree angle. (see illustration 8) If
perfectly vertical chains must be installed, use a plastic or aluminum
clip-on "U" channel and position holes as desired. (see illustration 9)

FasteningAmbient temperature should always be taken into consideration when
attempting to fastenFoam to walls, poles, frames, wood and other
plastics. As a thermoplastic, InteFoam is susceptible to expansion or
contraction when there are significant changes in temperature. Dark
colors tend to absorb more heat when exposed to direct sunlight.

When using bolts or screw for mounting, it is recommended to drill oversized or slotted holes positioned at least 1" from the edges in order to compensate for this characteristic common to most plastics *(see illustration 10)* Grommets or a dab of silicone in the holes will create a tighter hold.

To allow stress relief from expansion, bolts, and screws should only be moderately tightened. Apply the coefficient of linear expansion from *Table 4* to the total temperature swing differential to calculate your specific requirements.

Thread cutting and thread forming screws may be used to mount lightweight objects to Foam. Use moderate torque pressure to avoid stripping the threads.

	If wind shear forces are a consideration, using large diameter washers is recommended to spread the load forces over a larger area.		
WEATHERABILITY	Due to the natural UV inhibitors in white Foam, it tends to perform very well in outdoor conditions. Colors have the tendency to fade over time when exposed to direct sunlight. However, Foam colors perform the best in the industry. Several years of research have resulted in formulations that make Foam colors stand out. We recommend performing your own testing by putting Foam and other manufactures' color chips, side by side, under the same environmental conditions. The results will astound you.		
FIRE RESISTANCE	conforms to UL94 V0, UL94 5V and UL48, which allows to be used in the manufacturing of electric signs.		
FORMULATION PARAMETERS	contains no lead or heavy metals in its formulation. Please refer to <i>Table 5</i> for Chemical Resistance Chart.		

Table 4Example of Effects of Thermal Expansion					
Coefficient of Linear Expansion Total Temperature Difference (°F) 48" Span 96" Span					
6 x 10 ⁻⁵ ~ 8 x 10 ⁻⁵ in/in/°C 0 ~ + 110 +0.174" ~ +0.232" +0.348" ~ +0.465"					
3.3 x 10 ⁻⁵ ~ 4.4 x 10 ⁻⁵ in/in/°F 0 ~ -20 -0.032" ~ -0.042" -0.064" ~ -0.084"					

Table 5 Chemical Resistance			
Reagent	Code	Reagent	Code
Glacial Acetic Acid	2	Turpentine	1
Hydrogen Peroxide (30%)	1	Sodium Carbonate Solution (20%)	1
Acetone	4	Toluene	4
Hydrofluoric Acid (40%)	1	Methyl Alcohol	1
Ammonium Hydroxide (Concentrate)	1	Sulfuric Acid (Concentrate)	1
Hydrochloric Acid (Concentrate)	1	Sodium Hydroxide Solution (Concentrate)	1
Carbon Tetrachloride	3	Citric Acid (10%)	1
Most Detergents	1	Ethyl Alcohol	1
Seed or Mineral Oils	1	Ethyl Acetrate	4

Resistance Codes: 1 - Inert: 2 - Limited; 3 - Very Limited; 4- Non Resistant

TECHNICAL SPECIFICATIONS:

Foam

I. TYPICAL PROPERTIES

PROPERTY	TEST METHOD	UNIT	VALUE
PHYSICAL			
Specific Gravity	ASTM D 792	g/cm^3	0.75
Water Absorption	ASTM D 570	%	.30
Shore D Hardness	ASTM D 2240		52
MECHANICAL			
Tensile Strength at Yield	ASTM D 638	psi	3,000
Elongation at Break	ASTM D 638	.%	15
Flexural Modulus	ASTM D 790	Psi	130,000
Impact Strength(Charpy Unnotched)	ASTM D 256	ft lb/in^2	7
Dielectric Strength	ASTM D 149	kv/mm	12
THERMAL			
Heat Distoration Temperature	ASTM D 648		
(under load at 264 psi)	ASTM D 696	°F	140
Coefficient of Linear Expansion	ASTM D 177	In/in/°F	35 x 10^-6
Thermal Conductivity		Btu in/hr ft^2 °F	0.50

II. FLAMMABILITY STANDARDS

OTHER PROPERTY		RATING
THERMAL		
UL 94	VO	Passed
UL 94	5V	Passed
UL 48	N/A	Passed

III. AVAILABILITY

	STANDARD	CUSTOM
SIZE	4ft x 8ft (48" x 96")	Available upon request
COLORS	White, Black, Beige, Dark	
1/8" (3mm) & ¼" (6mm)	Gray, Light Gray, Red, Dark	Available upon request
	Yellow, Dark Blue, Green	
GAUGES		
In millimeters	1 through 6, 10 & 12.7	Available upon request

The information contained herein is true and accurate to the best of our knowledge. All recommendations and suggestions are made with guarantees. This information is to be used by individuals with technical skill at their own discretion and risk.

Material Safety Data Sheet

Manufacturer

1. PRODUCT INDENTIFICATION

Product Name	PVC Sheet	
Product Code	Inte001	
Chemical Family	Vinyl Polymers	
Chemical Name	Polyvinyl Chloride Sheet	
CAS No	N/A	
	Integral Skin Expanded Foam PVC Sheet	
	Clear PVC Sheet	
	Rigid PVC Sheet (Type I and II)	
	Expanded Foam PVC Sheet	
Formula	Proprietary	
Technical Information	512-874-3760	

2. PRODUCT INGREDIENTS

No.	Components	CAS No.	Percent	OSHA PEL
1	PVC Sheet	9002-86-2	70-95%	5 mg/M^3 (respirable dust)
2	Calcium	1317-65-3	0-20%	10 mg/M^3 (total dust)
	Carbonate			
3	Titanium Dioxide	13465-67-7	0-20%	110 mg/M^3 (total dust)
4	Proprietary	Mixtures	0-3%	Not Established

3. PHYSICAL/CHEMICAL PROPERTIES

Physical Form	Solid	
Color	Finished sheet with colors specified	
Odor	Insignificant	
Molecular Weight	Ranging from 60,000 – 150,000	
Boiling Point	N/A	
Melting Point	Not established	
Freezing Point	N/A	
Solubility in Water	None	
Specific Gravity	0.5-1.4 (water = 1)	
Vapor Density	N/A (air = 1)	
Evaporation Rate	None (Butyl Acetate = 1)	
Vapor Pressure	N/A	
% Volatile	None	
рН	N/A	

The physical date presented above are typical values and should not be construed as a specification.

4. FIRE HAZARD DATE AND FIGHTING METHOD

Flash Point	n/a
Autoignition	n/a
Flammable Limits in Air	
(LEL, %)	n/a
(UEL, %)	n/a
Extinguishing Media	Dry chemical, foam water, or carbon dioxide
Special Fire Fighting Procedure	In the event of a fire, wear NIOSH approved, positive pressure, self-
	contained breathing apparatus (SCBA) and full protective clothing.
	Evacuate all personnel from anger area. Use dry chemical, foam, water or
	carbon dioxide to extinguish fire.
Unusual Fire and Explosion Hazards	PVC will not continue to burn after ignition without an external fire
	source. However, when forced to burn, the major gaseous products of
	the combustion of PVC are carbon monoxide, carbon, dioxide, and
	hydrogen chloride.

5. HUMAN HEALTH DATA

Emergency Overview	During a Fire Emergency			
Primary Route(s) of	Inhalation	Ingestion	■ Eye	Skin Contact
Exposure				
Potential Health Effects	and Symptoms of C	Over-Exposure		
During a fire emergency	y, when this produc	t is burned, it may ge	nerate smoke.	
Eye Contact	Smoke from a fire	Smoke from a fire emergency may cause eye irritation		
Skin Contact	Molten plastics from a fire may cause skin burns			
Inhalation	Smoke from a fire emergency may cause respiratory irritation			
Ingestion	Unlikely			
Medical Conditions Agg	ggravated by Over-Exposure			
Available toxicological i	information and the physical/chemical properties of the material suggests that there is no			
evidence that this prod	evidence that this product aggravates an existing medical condition			
Carcinogenicity	NPT: No IARC: No OSHA: No			

6. FIRST AID MEASURES

Eye Contact	Immediately flush eyes with water for at least 15 minutes. Do not rub the eyes. If irritation develops, consult a physician.
Skin Contact	If burned by molten plastics, get medical attention immediately.
Inhalation	If smoke from burning plastics is inhaled, remove subject to fresh air immediately. If symptoms develop. Seek immediate medical attention.
Ingestion	Unlikely
Notes to Physician	Treat symptomatically and supportively
Other Instructions	Never give anything by mouth to an unconscious person.

7. EXPOSURE CONTROLS & PERSONAL PROTECTION RECOMMENDATIONS

Eye Protection	Wear safety glasses during sheet cutting or fabricating process.
Skin Protection	Wear gloves when cutting or fabricating sheets by hand
Respiratory	Fire fighter should wear NIOSH approved self-contained breathing
Protection	apparatus (SCBA) during fire emergency
Engineering Control	Ventilation Requirement: Local Exhaust Specific General
Required	Do not eat, drink or smoke in work area. Wash hands thoroughly after
Work/Hygiene	handling especially before eating, drinking, smoking, chewing gum, or
Procedure	using restroom facility
Exposure Guidelines	
No.	Р
Components	PVC Sheet
OSHA-PEL	n/a
ACGIH-TLV	n/a

8. ACCIDENTAL RELEASE CONTROL MEASURES

Response to Spills	N/A

9. HANDLING AND STORAGE

Handling	Use with care. Wear gloves if necessary when cutting or fabricating
	sheet.
Storage	Store in a cool dry, well-ventilated area away from sources of extreme
	hear or fire.
	Note: Electrical buildup is possible
Container Use	N/A

10. STABILITY AND REACTIVITY

Stability	Stable
Conditions to Avoid	Fire or extreme heat
Hazardous Decomposition	If burned, it will generate carbon dioxide, carbon monoxide, HC1.
Hazardous Polymerization	Will not occur

11. DISPOSAL CONSIDERATIONS

Disposal Method	It must be disposed of in accordance with Federal, State and local	
	environmental control regulations.	
Recycle/Reclaim Recycling of PVC sheet should be encouraged where possible		

12. TRANSPORT INFORMATION

DOT Shipping Name	Not listed
DOT Label	Not applicable
DOT Hazard Class	Not regulated
UN/NA Number	Not applicable
Hazard Label(s)	Not applicable
Hazard Placard(s)	Not applicable
Packing Group	Not applicable
Bulk Packaging	Not applicable
RQ	Not applicable
Emergency Response Guide (ERG) No.	Not applicable

13. TOXICOLOGICAL INFORMATION

The information provided below can be subject to misinterpretation. Therefore, it is essential that the following information be interpreted by individuals trained in its evaluation.

Chemical	PVC Sheet
Toxicity Date	A review of the scientific literature did not
	indicate specific toxicological information for PVC
	sheet.

14. ECOLOGICAL INFORMATION

No data is available on the adverse effects of this product on the environment.

15. REGULATORY INFORMATION

Regulatory Information: PVC Sheet		
OSHA Status	Not listed, non-hazardous	
EPA Clean Air Act	Not listed	
Status		
EPA Clean Water Act	Not listed	
Status		
TSCA Status	All ingredients are listed on TSCA Inventory (40CFR710)	
CERCLA RQ	Not Listed	
SARA Title III: PVC Sheet		
Section 302*	None	
	*Reportable quantity of extremely hazardous substance, Sec. 302	
	*Threshold planning quantity, extremely hazardous substance, Sec. 302	
Section 313**	None	

	**Toxic chemical, Sec. 313.		
	**Category as required by Sec. 313 (40CFR372.65C) must be used on Toxic		
	Release Inventory Form.		
Section 311/312***	None		
	***Hazard category for SARA Sec. 311/312 reporting		
	H1=acute health hazard		
	H2=chronic health hazard		
	P3=fire hazard		
	P4=sudden release of pressure hazard		
	P5=reactive hazard		
RCRA Status	It is the responsibility of the product user to determine at the time of disposal		
	whether a material containing the product or derived from the product should		
	be classified as a hazardous waste (40CFR261.20-24)		

Other Regulatory Information

The following chemicals are specifically listed by individual states; other product-specific health and safety data in other sections of the MSDS may also be applicable for state requirements. For details on your regulatory requirements, you should contact the appropriate agency in your state.

State	None
Chemical	PVC Sheet
Regulation	None
Product Name	PVC Sheet
International	None

16. OTHER INFORMATION

NFPA	HMIS
Fire-1	Health-0
Health-0	Flammability-1
Reactivity-0	Reactivity-0
Specific Hazard- None	Personal Protection Index-E

Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.

Heurio Latticework's

PVC Sheet Distribution

Heurio Latticework's

503 Sandy Cross Rd. Washington, Ga. 30673